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Figure 1: Material-based sonification approach for real-virtual object interactions in Augmented Reality

ABSTRACT

In Augmented Reality (AR), virtual objects interact with real ob-
jects. However, the lack of physicality of virtual objects leads to the
absence of natural sonic interactions. When virtual and real objects
collide, either no sound or a generic sound is played. Both lead to
an incongruent multisensory experience, reducing interaction and
object realism. Unlike in Virtual Reality (VR) and games, where
predefined scenes and interactions allow for the playback of pre-
recorded sound samples, AR requires real-time sound synthesis that
dynamically adapts to novel contexts and objects to provide audio-
visual congruence during interaction. To enhance real-virtual ob-
ject interactions in AR, we propose a framework for context-aware
sounds using methods from computer vision to recognize and seg-
ment the materials of real objects. The material’s physical proper-
ties and the impact dynamics of the interaction are used to generate
material-based sounds in real-time using physical modelling syn-
thesis. In a user study with 24 participants, we compared our con-
gruent material-based sounds to a generic sound effect, mirroring
the current standard of non-context-aware sounds in AR applica-
tions. The results showed that material-based sounds led to signifi-
cantly more realistic sonic interactions. Material-based sounds also
enabled participants to distinguish visually similar materials with
significantly greater accuracy and confidence. These findings show
that context-aware, material-based sonic interactions in AR foster a
stronger sense of realism and enhance our perception of real-world
surroundings.

*e-mail: laura.schuetz@tum.de

Index Terms: Audio feedback, Sonic interaction, Audiovisual
interaction, Augmented reality, AR, XR, Multisensory perception,
Multisensory congruence, Semantic congruence, Material sounds,
Context-aware, User interface, Human-computer interaction

1 INTRODUCTION

Our interactions with physical objects naturally create sound.
Sound occurs when vibrations set a medium like air into motion.
The physical properties of a medium directly shape the sound it pro-
duces. For instance, placing a cup on a table, typing on a keyboard,
or knocking on a wooden door all make distinct sounds. Therefore,
sounds contain information about the source and the event that pro-
duced it, enabling people to identify materials from sounds. Audi-
tion helps us pick up these sounds and understand what’s happen-
ing in our environment. The idea of ecological acoustics explains
how we use sound to make sense of the world [29]. It explores
how sounds carry information about objects, spaces, and events,
and how our auditory system interprets them to navigate the world.

Materials are mainly identified in impact sounds via frequency
and damping parameters of the sound [21, 27]. However, since
frequency changes can also be attributed to changes in object ge-
ometry, damping cues have been shown to be more reliable for ma-
terial identification from hitting actions [28]. It has furthermore
been shown that recovering materials from action sounds is harder
than identifying the sound producing action, like scraping or rolling
[24].

Augmented Reality (AR) applications aim to seamlessly blend
virtual and physical elements. However, when interacting with vir-
tual objects, we are robbed of these ecological sounds. The rela-
tionship between the sound and the sound source is lost when we
use no sound or incongruent sound effects to sonify virtual object
interactions, resulting in incongruent multisensory perception. This
discrepancy reduces the interaction realism and weakens the user’s
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sense of presence.

Studies have demonstrated that audiovisual congruence in-
creases presence and realism in Virtual Reality (VR) experiences
[19]. Semantic congruence specifically has been shown to improve
recognition speed and attentional control, making it a key factor in
enhancing interaction realism [23, 6]. Unlike in VR and games,
where objects and environments are predefined, and sound sam-
ples can be retrieved from a sound library when a sound-producing
event occurs, AR operates in constantly changing real-world envi-
ronments. As a result, pre-recorded audio samples are insufficient
to create realistic sonic interactions. There is a need for real-time
audio synthesis that dynamically considers the materiality of real-
world objects during interactions in AR.

This work aims to bring audiovisual congruence to AR inter-
actions and thereby enhance the perceptual link between users and
their physical environment. We introduce a material-based sonifica-
tion technique that generates dynamic, congruent impact sounds for
real-virtual object interactions in AR, using object material prop-
erties and impact dynamics to produce accurate audio feedback.
Leveraging existing machine learning methods for real-time ma-
terial segmentation, we extract material information from unseen
environments. By combining these techniques with physics-based
sound synthesis, we enable real-time, material-driven audio feed-
back without relying on pre-recorded audio clips or large training
datasets. What we do not contribute is a technique for generating
highly realistic material sounds, nor a comprehensive study on the
perceptual effects of audiovisual congruence in AR. Instead, our
work makes the following contributions:

1. We propose a framework for context-aware sounds in AR us-
ing material segmentation and physical modelling sound syn-
thesis.

2. We demonstrate a material-based sonification approach that
creates physics-based sounds in real-time.

3. We report results from a user study showing that the proposed
material-based sounds improve perceived interaction realism
over standard generic sounds.

2 RELATED WORK
2.1 Material Segmentation

Material segmentation is a field of study in computer vision that
has seen significant advancements in recent years. It is concerned
with the task of assigning material labels (e.g., wood, metal) to each
pixel in an image. Material segmentation is, for example, used in
robotics, for effective decision-making and object interaction [36],
or in autonomous driving, where material cues help improve terrain
understanding and safety decisions [3]. The Materials in Context
Database (MINC) is a large dataset that facilitates deep learning
approaches for material recognition [2]. Another recent contribu-
tion is the Dense Material Segmentation dataset, which provides 3.2
million dense material annotations for a diverse set of indoor and
outdoor scenes, objects, viewpoints, and materials [48]. This makes
it especially suitable for augmented reality use cases, where de-
tailed material recognition from diverse viewing angles is required
for realistic interactions.

2.2 Sound Synthesis Techniques

To recreate realistic action sounds, we can make use of a variety of
sound synthesis methods. Three prominent sound synthesis meth-
ods for action sounds are:

Sampling-Based Sound Synthesis: Widely used in games and
virtual reality, this method is an easy way to create action sounds
from pre-recorded samples [26]. The samples are associated with
events or locations in the scene and played back when the interac-
tion occurs. To simulate continuous sounds, periodic elements of

the waveform are often looped. Filters and envelopes can be ap-
plied to diversify the sound output from a given set of samples [9].
Although sample-based synthesis is easy to implement and com-
putationally efficient, it is limited by the prerecorded sound clips
available in a database. As a result, it lacks the flexibility to respond
to unexpected changes in the environment, making it less suitable
for context-sensitive applications such as Augmented Reality.

Data-Driven Sound Synthesis: This approach to sound synthe-
sis uses various data analysis techniques, including statistical meth-
ods and machine learning, to infer action sounds. Physics-driven
machine learning approaches, such as physics-informed diffusion
models, have been developed to synthesize impact sounds from
videos [46]. Identifying visual representations of sound-producing
actions can be learned from egocentric videos [4] and used to gen-
erate action-matching sounds [5]. Large language models (LLMs)
have been employed to query for foley sound effects matching the
content of a video clip. These sound samples are later adjusted to
match the motion dynamics in the video clip [25, 7]. While data-
driven approaches can create realistic action sounds from video
data, they are constrained by dataset limitations and inference la-
tency.

Physical Modelling Sound Synthesis: Given that material
sounds are closely tied to the physicality of the sound-producing
objects and actions, model-based synthesis is a promising approach
to creating material-based action sounds. This method can create
highly realistic impact sounds in real-time, but is more computa-
tionally intensive than sample-based sonification. However, several
techniques for accelerating physically based sound simulation have
been shown to reduce the computational cost, enabling simultane-
ous simulation of numerous sound models [35], without relying on
prior training, as is necessary for data-driven techniques.

The construction of sound models is commonly achieved
through physical modelling synthesis [10]. This technique aims
to mimic the physical characteristics of real-world instruments, ef-
fectively emulating the behavior of actual objects. Several simula-
tion software have been proposed for modeling sounds dynamically
based on object properties. Early work in modal synthesis, such as
Mosaic [31] and Modalys [11], demonstrated its potential for realis-
tic audio generation. Modalys, in particular, uses the finite element
method to perform physical modelling synthesis. By solving differ-
ential equations associated with vibrating systems, it can represent
key dynamic characteristics such as natural frequencies, damping
behavior, and mode shapes, relevant to the creation of realistic ma-
terial sounds. By precomputing the object’s modes of frequencies,
this approach enables efficient synthesis, ideal for realtime interac-
tions.

Van den Doel et al. [49] introduced a method for real-time
synthesis of contact sounds, such as impact, rolling, and friction,
for solid materials using modal synthesis. Later work on modal
synthesis for interactive sounds investigated the inclusion of sur-
face information at three levels of resolution (object shape, visible
surface bumpiness, microscopic roughness) for synthesizing com-
plex contact sounds in virtual environments [37]. More recently,
learning-based methods have been proposed for real-time modal
impact sound synthesis [17].

However, a key challenge in using modal techniques is the lack
of automatic determination of satisfactory material parameters that
recreate realistic audio of sound-producing materials [43]. In AR,
this problem is exacerbated. Unlike virtual environments where
predefined 3D objects are assigned parameters that will lead to sat-
isfactory audio output, we deal with unknown physical objects, in-
teractions, and collision points in AR. Therefore, we believe that a
real-time understanding of the context, objects, and interactions is
needed to obtain the required information to create context-aware
sonic interactions.

While the works referenced in this section from the fields of
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computer vision [46, 5, 4, 7], computer graphics [9, 35, 49], and
computer music [10, 31, 11] focus on methods for generating
highly-realistic synthesized action sounds, our work, proposing a
novel material-based sonic interaction technique, leverages an es-
tablished sound synthesis technique that has been proven to create
high-quality impact sounds [11].

2.3 Audio Interactions in XR

Virtual Reality: Numerous studies have explored the simulation
of realistic sonic interactions in virtual environments. Serafin et
al. [43] stated that an immersive sonic experience relies on action
sounds, binaural rendering, environmental sounds, and sound prop-
agation. Since this study focuses on action sounds - sounds pro-
duced by the listener and changing with movement [13]) - we will
highlight a few works on action sounds in this section.

Besides object-related contact sounds, the simulation of footstep
sounds in VR has also been studied. Nordahl et al. [33] presented
an algorithm for simulating walking sounds on solid and aggregated
surfaces. In addition, the use of velocity-based variations in walk-
ing sounds has been proposed for simulated sneaking in VR [8].
Schiitz et al. [42] introduced a multisensory interaction framework
for audiovisual interaction with anatomical structures using a phys-
ically based sonification approach. Their framework, along with
the other physics-based approaches for impact sounds outlined in
Sec. 2.2 [49, 37, 17] are effective for fully virtual environments.
However, they would require high-resolution 3D reconstructions
of physical objects in the scene and real-time computation of the
objects’ natural frequencies to be feasible for application in AR,
limiting their practicality. All the above studies were conducted in
entirely simulated or virtual environments. In contrast, only a few
works have investigated context-based sounds in AR.

Augmented Reality: To create context-aware sounds in AR,
we require knowledge about the real-world environment. This can
be achieved by using sensing technology and analyzing the sensor
or camera data. Wilson et al. [52] were among the first to pro-
pose a system that provides relevant audio feedback about the en-
vironment. Using GPS and head orientation to estimate the user’s
pose, the system dynamically generates spatialized, non-speech au-
dio cues that provide blind or visually impaired users with nav-
igation and inform them about nearby features (e.g., benches or
stairs). Medical augmented reality systems using electromagnetic
or visual tracking demonstrated precise localization of points of in-
terest within the patient body using parameter mapping sonification
[40, 41]. A study by Su et al. [47] introduced a system that gener-
ates context-aware sound effects for AR by analyzing the semantics
of the virtual augmentations and real-world context. An LLM pro-
cesses this information to acquire suitable audio through sample re-
trieval, text-to-sound generation, or text-based sound style transfer.
While their approach targets the curation of a set of sound effects
that people can choose from to sonify animated AR content, not re-
quiring real-time sound synthesis, our work focuses on generating
real-time impact sounds resulting from human-object interactions.

To the best of our knowledge, this is the first work to introduce a
context-aware framework for material-based impact sounds in AR.
We sonify real-virtual object interactions using real-time material
segmentation of physical objects, enabling physically-based sound
synthesis in AR. Using this system, semantically and temporally
congruent interaction sounds can be generated for unseen environ-
ments in real-time.

2.4 Multisensory Congruence in XR

Laurienti et al. [23] report that semantically congruent audiovi-
sual stimuli enhance recognition speed and accuracy in perception
tasks. Chen and Spence [6] showed that semantically congruent
audiovisual stimuli enhance, whereas semantically incongruent au-
diovisual stimuli impair, object identification performance. They

further highlight the role of temporal congruence in audiovisual
perception, showing that users can tolerate slight delays of up to
300 ms between audio and visual stimuli, but that excessive desyn-
chronization disrupts the formation of a coherent multisensory per-
cept. Besides identification accuracy and speed, matching cross-
modal stimuli have been shown to enhance the ability to select and
hold attention on an object when multiple sensory stimuli compete
for attention [51]. Additionally, a study by Fujisaki et al. [12] on
audiovisual integration in material perception revealed that sound
accuracy significantly affects the perceived material properties of
objects.

In VR environments specifically, establishing multisensory con-
gruence has been shown to improve the user’s attention and sense of
presence [43]. A study by Kim et al. [20] demonstrated that audio-
visual congruence significantly improved users’ sense of presence,
realism, and emotional engagement, while incongruence reduced
immersion and increased perceived effort during interaction. Two
studies on gait-aware auditory feedback showed that congruent au-
dio feedback enhances presence and immersion in virtual environ-
ments [15, 16]. These findings underscore the importance of en-
suring multisensory congruence in XR environments, as congruent
stimuli enhance realism and presence.

Many of the works from cognitive psychology and neuroscience
cited in this section [23, 6, 12, 51] focus on evaluating the effects of
varying degrees of multisensory congruence on user perception in
controlled psychological experiments. In contrast, our work com-
pares two audiovisual interaction techniques in AR to demonstrate
that congruent, material-based sounds can enhance the perceived
realism of AR interactions compared to generic sounds.

3 METHODS

We propose a material-based approach to sonic interactions in
AR using material segmentation to inform the physical modelling
sound synthesis. Fig. 1 depicts an overview of the system compo-
nents. Each component is described in more detail below.

3.1 Scene Understanding

To obtain material information about the objects in the environ-
ment, we stream camera images from the left camera of the Vision-
Pro via a WebSocket to a Python script running on a MacBookPro
(M1 Max). Camera frames were sent every 200 milliseconds. The
Python script runs a pre-trained material segmentation model, pre-
sented in a paper by Upchurch and Niu [48] on the RGB camera
images. The frames are originally captured at 1920x1080 resolu-
tion and downscaled to 960x540 to enable faster inference. The
resulting segmentation mask - an image with color-coded material
labels - is then sent back to the Swift script running on the Vision
Pro. Lower image resolutions such as 512x512 or 256x256 signifi-
cantly degraded classification accuracy. Through empirical testing,
960x540 proved to be the most optimal trade-off between process-
ing speed and segmentation quality for our application.

3.2 Object Interaction

The AR application was developed using Unity? (v 6000.0.27f1),
with Unity PolySpatial (v 2.1.2) supporting deployment on vi-
sionOS (v 2.0). Hand interactions were implemented via the XR
Interaction Toolkit (v 3.0.7). To receive segmentation masks within
Unity, a dedicated package for Apple Vision Pro camera access?
was integrated. The package facilitates communication between
Swift and Unity through a callback mechanism. The callback func-
tion is implemented in C++ (Unity) and invoked in Swift to acquire
the segmentation mask images from the Vision Pro. The segmen-
tation masks were received and stored as Texture2D objects. The

Thttps://github.com/apple/mI-dms-dataset
Zhttps://unity.com
3https://github.com/styly-dev/EnterpriseCameraAccessPlugin
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Figure 2: Task 1 (left) and Task 2 (right) of the user study. Task 1 - Participants had to identify one material at a time using the material-based
and generic sound condition. Task 2 - Participants had to distinguish two visually similar materials in the material-based and generic sound
condition. The same sound effect was used for every material in the generic condition. Individual physical modelling-based sounds were

generated for every material in the material-based condition.

ARFoundation (v 6.0.5) AR Plane Manager was used for plane de-
tection. When a virtual object collided with a real-world surface
(AR plane), the world-space collision point was transformed into
the image plane of the previously recorded segmentation masks us-
ing the headset camera intrinsics and the corresponding camera-to-
world transformation matrix. For each segmentation mask in the
history buffer of up to 5 images, the 3x3 neighborhood around the
projected UV coordinate of the collision was sampled to retrieve the
most frequent RGB pixel color values. These values were then used
to retrieve the associated material class from a dictionary mapping
RGB values to material names. A majority vote across all segmen-
tation masks determined the most likely material at the collision
point to provide temporal smoothing and robustness against noisy
classification results.

3.3 Material-based Sonification

The collision material name is sent from Unity to Max/MSP*, a
software for audio programming, using Open Sound Control [53],
a network protocol for interactive computer music. Modalys for
Max?, a physical modelling sound synthesis software, is used to
sonify the object interactions. Depending on the object shape,
sound models can be created. However, in our study we only fo-
cused on evaluating material samples in the shape of plates. There-
fore, we used a 3D rectangular plate model in Modalys to repre-
sent the geometry of the real-world material samples. The physi-
cal material properties of density (kg/m3), stiffness (Young modu-
lus, kPa), and Poisson’s ratio were used to parameterize the plate
model (see Tab. 1)). Additional parameters included plate thick-
ness and damping coefficients such as constant loss and frequency
loss. Modalys numerically solves a set of differential equations that
control the dynamics of these modes over time, simulating how
the plate responds to the excitation based on its physical parame-
ters. When a collision occurs in Unity, force is applied to excite
the virtual plate object in Modalys. All kinds of interactions, like
bowing or striking, can be realized within Modalys. To isolate the
perception of material properties, we used a one-dimensional force
connector, a point-mass excitation at a single location on the rect-
angular plate. In physical modeling synthesis, complex excitations
can introduce nonlinearities that mask the acoustic characteristics
of the simulated material. By simplifying the excitation, we re-
duced its impact on the resulting sound, ensuring that sound differ-

“https://cycling74.com/products/max
Shttps://support.ircam.fr/docs/Modalys/current/

ences originated mostly from material properties rather than excita-
tion artifacts. When an excitation occurs, energy is introduced into
the model, triggering vibrations across the plate’s resonant modes.
Modalys picks up the resulting motion at defined listening points,
where the sum of the active modes is converted into an audio signal
in Max/MSP.

4 STUDY

To determine whether audiovisual congruence established using our
material-based sonification approach can enhance interaction real-
ism in AR, we performed a within-subject study comparing our
context-ware, material-based sounds to a standard generic sound
to investigate the following hypotheses:

H1 Material-based sounds enhance material identification accu-
racy (Task 1)

H2 Material-based sounds enhance material identification confi-
dence (Task 1 & Task 2)

H3 Material-based sounds enhance sonic interaction realism
(Task 1)

H4 Material-based sounds facilitate distinguishability of visually
similar materials (Task 2)

In the AR application, participants were given a virtual stick,
which they were instructed to grab with a pinch gesture and use to
tap on real, physical material samples. Participants were told that
they could imagine the stick as a stiff object similar to a plastic pen.
The material of the virtual stick was purposefully left undefined as
our approach aimed to exclusively explore the simulation of impact
sounds on real-world objects. Participants had to perform two tasks
(Fig. 2). Both tasks included two audio conditions: material-based
and generic.

41 Task1

In Task 1, each condition included 10 trials, one for every material.
Participants were presented with one material at a time and asked to
tap on the material sample using the virtual stick to create the im-
pact sounds. Based on the visual appearance of the material and the
tapping sound, they were asked to answer three questions related to
the material and its properties and one question about the realism of
the sonic interaction. After either condition, the participants com-
pleted a post-condition questionnaire, which included questions re-
lated to their material perception confidence and the helpfulness of
the sound (see Sec. 4.1.3 for all questions in Task 1).



To appear in the proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 2025

Table 1: Physical properties of the materials used in Task 1 and Task
2 based on research in mechanics and material sciences [30, 34,
44, 32, 22]: Density (kg/m3), Stiffness (Young modulus (N/m2)),
Poisson’s ratio

Material Density (kg/m3)  Stiffness (N/m2)  Poisson’s ratio
Cardboard 689 5.0x 108 0.33
Ceramic 2600 2.0x 10! 0.25
Cork 240 1.0x 108 0.30
Fabric 1500 1.0 x 10° 0.30
Glass 2500 7.2x 1010 0.20
Leather 860 1.0x 108 0.40
Metal 7800 2.0x 10!! 0.30
Paper 800 5.0x 108 0.33
Plastic 1100 2.5x 10° 0.35
Rubber 1100 1.0x 107 0.50
Stone 2700 5.0x 1010 0.25
Wood 700 1.0x 100 0.30

411 Stimulus

Ten realistic indoor surface materials covering a wide range of
physical properties, from elastic to stiff, from airy to dense, were
included in Task 1: Cardboard, Ceramic, Cork, Fabric, Glass,
Leather, Metal, Plastic, Stone, Wood (see Tab. 1 for their physi-
cal properties and Fig. 3 for images and sounds). The samples were
sized 10x10, 11x15, or 22x22. The thickness of the plates ranged
from 0.3 to 1.0 cm.

4.1.2 Independent Variables

Sound The task included two audio conditions: material-based and
generic. The material-based condition used the proposed material-
based sonification approach to create congruent material interaction
sounds for all twelve materials used in the study. In the generic
condition, the same audio sample ("Button Pop” from the XR In-
teraction Toolkit (v 3.0.7)) was played for all materials, emulating
the current standard in AR where identical sounds are used for in-
teractions between virtual and physical objects regardless of their
materiality.

4.1.3 Dependent Variables

Material & Properties Participants answered the following ques-
tions after every trial inside the AR application: ”Which material is
it?”. The names of the ten materials included in Task 1 (Sec. 4.1.1)
constituted the answer options. In addition, we wanted to assess
their perception of the material’s physical properties. We asked
them to rate the density of the material - "How dense is the ma-
terial?” - on a continuous scale from ”As airy as milk foam” (0)
to ”As dense as gold” (100). They also rated the stiffness - "How
stiff is the material?” - from ”As elastic as rubber band” (0) to ”As
stiff as diamond” (100). These questions inside the AR application
used visually uniform sliders without intermediate anchors, allow-
ing participants to select any numeric value along a continuum.

Confidence & Helpfulness In a post-condition, desktop-based
questionnaire, participants responded to three 7-point Likert scale
questions on a scale from strongly disagree (1) to strongly agree (7)
to assess their subjective confidence in their material and material
properties answers for all trials in the condition. The items were:
”I was confident in my material assignments.”, "I was confident in
my density estimations.”, and ~’I was confident in my stiffness es-
timations.”. They furthermore answered the 7-point Likert scale
question, “The audio feedback was helpful for classifying the ma-
terials.” using the same scale.

Sound Realism To assess the sonic interaction realism, participants
responded to the question "How realistic was the sonic interac-
tion?” on a continuous 0-100 slider from not realistic at all (0) to
absolutely realistic (100) after every material inside the AR appli-
cation.

42 Task2

In Task 2, participants were given two visually similar materials at
the same time in each trial. The participants were again tasked to
tap on the materials. Based on the visual and auditory cues, they had
to identify the materials, rate their confidence in the assignment,
and rate the helpfulness of the sound in distinguishing the materials.

4.2.1 Stimulus

We purposefully selected six pairs of visually similar materials,
which, however, differed in their actual materiality. In addition,
we selected pairs to form two groups:

Ambiguous Material pairs that are visually and audibly similar:
wood & wood-printed plastic, glossy paper & glossy plastic, stone
& stone-printed plastic.

Unambiguous Material pairs that are visually similar, but audibly
different: glass & plexiglass, rubber & milky glass, coated ceramic
& coated wood.

4.2.2 Independent Variables

Sound Task 2 again featured the two audio conditions: material-
based and generic. In the material-based condition, the material
segmentation model was supplemented with marker tracking to en-
sure congruent sounds, as visually indistinguishable materials can-
not be reliably differentiated by current vision-based models. Nev-
ertheless, we included Task 2 to investigate whether material-based
sonification could aid users in disambiguating visually similar ma-
terials. To ensure consistency, we reused the same material-based
sonification model and physical parameters as in Task 1 for gener-
ating congruent sounds. In the generic condition, the same audio
sample as in Task 1 was applied to all materials.

Audiovisual Ambiguity As described in Sec. 4.2.1, we included
two groups of material pairs, a group of visually and auditorily am-
biguous materials and a group of visually ambiguous but auditorily
distinct materials.

4.2.3 Dependent Variables

Material For each material pair, participants were asked to iden-
tify which material corresponded to which sample. They were not
allowed to choose the same material for both samples. The items
were called: ”Which material is on the left?” and "Which material
is on the right?”. The answer options were, for example, ”Glass”
and “Plexiglass”.

Confidence & Helpfulness Participants rated their confidence in
the material assignments and the helpfulness of the sounds on a
continuous slider (0-100) from Not confident/helpful at all (0) to
Very confident/helpful (100) after every pair inside the AR applica-
tion. The items were called "How confident are you in your material
assignments?” and "How helpful was the sound to distinguish the
two materials?”.

4.3 Participants

24 participants (12 women, 12 men), with a mean age of 29.54
years (SD = 3.91), took part in the study. Most were PhD or mas-
ter’s students from the fields of biomedical engineering or com-
puter science, with the rest consisting of professionals from very
diverse subject areas ranging from business to literature studies and
law. The subjects’ music experience varied widely. One participant
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Figure 3: Materials used in Task 1 and Task 2 of the user study along with spectrograms of the material-based sounds generated using physical
modelling synthesis. Materials are sorted by increasing stiffness from left to right.

reported being a trained musician, four participants played instru-
ments regularly, twelve of the participants knew how to play one or
more instruments but rarely played, and seven participants reported
not having any musical training. Experience with using AR or VR
was similarly mixed. Fifteen subjects had used it either once or a
few times before, eight reported regular or even daily use, and one
had never used it before. Gaming habits were diverse as well, with
seven people playing daily or weekly, but the rest reported to play
very infrequently or never.

4.4 Procedure

Participants were seated in a quiet room at a well-lit table. After
providing informed consent and completing a demographics sur-
vey, they were equipped with the AR headset, and eye calibration
was performed. The material samples were placed out of sight of
the participants until retrieved one at a time only for the duration of
the trial before being removed from sight again. The audio was de-
livered to the participants via over-ear headphones. Each task began
with a training scene to familiarize participants with the procedure
and AR environment. In Task 1, participants completed 10 trials in
the first condition followed by a post-condition questionnaire, then
proceeded to the second condition and again the questionnaire. In
Task 2, they again started with a training scene followed by both
conditions of each 3 trials. The order of conditions in both tasks
was counterbalanced using Latin-square randomization. The study
concluded with a post-study questionnaire, where participants pro-
vided qualitative feedback.

5 RESULTS
51 Task1

A Shapiro-Wilk test showed a non-normal distribution of the data
for all measures. Outliers in the time data were assessed using
the interquartile range method, resulting in the removal of 5% of
the data points identified as outliers. No outliers were found for
the other measures. Wilcoxon signed-rank tests showed significant
differences (p < 0.001) between the two sound conditions for all
variables except the material recognition accuracy (see Fig. 4 and
Tab. 2).

5.1.1 Material-based vs. Generic Sounds

There was a significant main effect of condition (p<0.05) on
task time. Participants took significantly longer in the material-
based condition (46.83£16.02 seconds) than the generic condition
(41.44+£16.01 seconds). The time per trial did not significantly vary
based on which material they were viewing (p=0.4686). There was
also a significant main effect of condition (p<0.05) on the density
and stiffness estimations. Materials were rated significantly more
dense and more stiff in the material-based than in the generic condi-
tion. The sonic interactions were rated significantly more realistic
for the material-based condition (p<0.001). A per-material com-
parison of the realism rating for the materials used in the study can
be found in Fig. 5.

Cardboard Plastic Wood Stone Glass

Ceramic Metal

Material Identification Accuracy by Condition
89.61% 89.38%

-
B [e2] @ o
o o o o

N
o

Identification Accuracy (%)

generic material-based
Condition

Figure 4: Material identification accuracy by condition in Task 1

Participants furthermore rated the material-based sounds
(Mdn=5.5, MAD=0.5) much more helpful than the generic sound
(Mdn=1.0, MAD=0.0) for material identification (p<0.001). There
was no effect of condition on the subjects’ material identification
confidence. However, there was a significant effect of condition on
material properties estimation confidence (density: p<0.05, stiff-
ness: p<0.01) (see Fig. 6).

Table 2: Results Task 1: material identification accuracy (percent);
means, standard deviations and p-values of density (0-100), stiff-
ness (0-100), time per trial (seconds), sound realism (0-100); me-
dians, median absolute deviations, p-values of the 7-point Likert
scales on sound helpfulness, material confidence, density confi-
dence, stiffness confidence

Task 1 Generic Material-based  P-value
Material Accuracy 89.61% 89.38% > 0.05
Density 54 +24 59 +23 < 0.001
Stiffness 52 + 28 58 +27 < 0.001
Task Time 41.44 £16.01 46.83 +16.02 < 0.001
Sound Realism 15+ 19 66 + 21 < 0.001
Sound Helpfulness 1.0 (0.0) 5.5(0.5) < 0.001
Material Confidence 5.0 (1.0) 5.0 (1.0) > 0.05
Density Confidence 4.0 (1.0) 5.0 (1.0) < 0.05
Stiffness Confidence 5.0 (1.0) 5.0 (0.0) < 0.01

5.1.2 Hard vs. Soft Materials

We further divided the materials into hard (Ceramic, Glass, Metal,
Plastic, Stone, Wood) and soft (Leather, Cardboard, Cork, Fab-
ric). The sonic interaction was perceived to be significantly more
realistic for hard materials (73-+£14) than soft materials (55+17)
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Figure 5: Sonic interaction realism ratings by material for the congruent and incongruent sounds in Task 1, *** = p < 0.001

within the generic (p<0.01) and material-based (p<0.001) condi-
tion. Material-based vs. generic sounds led to similar material
identification accuracy for both soft and hard materials.

5.2 Task2

The data showed a non-normal distribution. Outliers were removed
from the task time data using the interquartile range method. Three
outliers were identified. Please refer to Tab. 3 for a breakdown of
all the results in Task 2.

5.2.1 Material-based vs. Generic Sounds

There was a significant main effect of condition (p<0.05) on
task time. Participants took significantly longer in the material-
based (84.314+39.34) than generic (72.70£27.95) condition. The
material-based sound feedback significantly improved participants’
ability to correctly identify visually similar materials (Chi-square
test: p < 0.001), showing higher accuracy (92.75%) than the
generic condition (61.76%). This was also reflected in the confi-
dence ratings, indicating significantly greater confidence in mate-
rial assignments when using the congruent, material-based sounds

Likert Scales Task 1 (N=24)

Confidence stiffness erial-base

. :
Confidence density I basec

Confidence . naterial-| @

|

Realism |-bas:

Helpfulness

100% 75% 50% 25% 0% 25% 50% 75% 100%

I Strongly disagree Neutral I Strongly agree

Figure 6: Barplot of Likert Scale responses in Task 1 by question
and condition

Table 3: Means, standard deviations, and p-values of the measures
in Task 2: material recognition accuracy (percent); material assign-
ment confidence (0: Not confident at all, 100: Very confident),
sound helpfulness (0: Not helpful at all, 100: Very helpful), time
per trial (seconds)

Task 2 Generic Material-based  P-value
Material Accuracy 61.76% 92.75% < 0.001
Confidence 2822 £25.13 7414 +19.20 < 0.001
Helpfulness 6.54 £ 12.32 79.16 £19.88 < 0.001
Task Time 72.70 £27.95  84.31 £39.34 < 0.05

(Wilcoxon signed-rank test: p<0.001) (see Sec. 5.2.1). Participants
furthermore perceived the material-based sounds to be significantly
more helpful in distinguishing between two materials (Wilcoxon
signed-rank test: p<0.001) (see Sec. 5.2.1).

5.2.2 Ambiguous vs. Unambiguous Material Sounds

The analysis of differences between ambiguous (visually and au-
ditorily similar) and unambiguous (visually similar yet auditorily
distinct) material pairs showed no significant effect of auditory am-
biguity on task time, sound helpfulness, or material identification
accuracy. A significant main effect of auditory ambiguity on ma-
terial identification confidence was found (p<0.001). Participants
were significantly more confident in their material assignments for
unambiguous (62.20%) than ambiguous (40.21%) pairs.

There was also a significant main effect of condition on mate-
rial recognition accuracy within the ambiguous (p<0.05) and un-
ambiguous (p<0.001) material groups. The material-based sound
feedback resulted in significantly higher material recognition accu-
racy (84.80%) than the generic sound feedback (60.00%) within the
auditorily ambiguous material pairs (see Sec. 5.2.1). The same is
true within the unambiguous material pairs, where material-based
sounds (100%) also achieved significantly greater material identifi-
cation accuracy than generic sound feedback (63.60%).

6 DISCUSSION

We introduced a framework for material-based sonic interactions
in AR and demonstrated improved interaction realism over generic
sounds, which are the current standard in AR applications.

More specifically, our results showed that congruent audiovisual
feedback in AR generated using our material-based approach leads
to significantly more accurate material identification (p < 0.001)) of
real-world objects when distinguishing between two visually simi-
lar materials (H4). However, no significant difference in identifica-
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sound helpfulness by condition

tion accuracy was observed in Task 1, where participants identified
a single material at a time (H1). This is likely because most of
the materials in Task 1 were already visually distinct enough to be
reliably identified by sight without the need for matching impact
sounds. In everyday contexts, when conflicting visual and audi-
tory cues are present, we often rely on additional haptic feedback
to discern materials. In our study, participants were not allowed
to touch the materials, as audiovisual stimuli were the subject of
examination. It is also noteworthy that in real-world settings, the
geometry of an object presents strong cues on object materiality.
Through experience, we have learned to associate certain materials
with certain object shapes. When visual information on object ge-
ometry and surface texture is combined, humans can infer material
types more confidently than in our controlled study setting, where
shape cues were missing. The use of uniformly shaped material
plates might have led to material misclassifications in cases where
material-based sounds were ambiguous.

The material identification results were consistent with par-
ticipants’ subjective confidence ratings (H2). In Task 1, where
identification accuracy did not differ between conditions, confi-
dence ratings were similarly unaffected. In contrast, in Task 2,
where material-based sounds significantly improved identification
accuracy, participants also reported significantly higher confidence
in their choices (p < 0.001) when audiovisual congruence was
given. Interestingly, regardless of identification accuracy, partic-
ipants expressed greater confidence in their estimations of mate-
rial properties (density, stiffness). This suggests that congruent,
material-based sounds carry meaningful information about physical
attributes, allowing users to perceive these properties with signifi-
cantly increased confidence (p < 0.05). These findings imply that
semantically congruent audio stimuli establish a deeper perceptual
link between users and their physical surroundings, even when in-
teracting with the real world through virtual objects.

Furthermore, we were able to show that sounds created using
our material-based approach led to significantly greater (p < 0.001)
sound realism (H3). The average sonic interaction realism was
rated 66 out of 100. This result is in line with findings from a study
in psychoacoustics that employed the same 0-100 scale for assess-
ing subjective judgment of sound realism. They reported an aver-
age score of 68 for recordings of real material interaction sounds,
compared to a mean score of 45 for the corresponding sound ef-
fects [14]. These findings demonstrate that even real sound record-
ings are not perceived as fully realistic, highlighting the need to

interpret realism ratings relative to other sound conditions. How-
ever, there is room for improvement in enhancing the realism of the
material-based sounds. The sounds of materials with lower density
and stiffness, like fabric, cardboard, cork, and leather, were rated as
less realistic than rigid materials. This may be related to the combi-
nation of high damping coefficients and low stiffness in soft materi-
als, resulting in lower frequency and shorter temporal evolution of
the sounds, thereby offering participants less time to perceive dif-
ferences in acoustic properties. Alternative sound synthesis tech-
niques, more suitable to soft bodies, e.g., data-driven approaches
[46, 45] could be explored to achieve greater sonic interaction real-
ism for soft materials.

Lastly, we saw increased task time during the material-based
condition in both tasks. In the generic condition, the same sound
effect was played for every material. Therefore, a potential influ-
ence on faster trial time may be that the auditory memory only
had to refer to one type of sound in every trial, speeding up the
decision-making process. Since the material-based sounds carry
nuanced information about the materials’ properties represented in
sound parameters such as frequency and decay [21], corresponding
to each material, the sound varied greatly for every trial. This led
participants to tap the materials more often in the material-based
condition, carefully listening to the complex sound qualities un-
fold. This was especially true for Task 2, where the material-based
trials consisted of two multifaceted sounds, while the generic tri-
als only presented the same sound for both materials. As a result,
participants had to integrate more information in the material-based
condition to compare and judge the materials, prolonging the trial
time.

6.1 Limitations

One limitation of our study is the use of average material property
values for the material sounds. However, these values can largely
impact the resulting sounds, making them less or more realistic. A
potential solution could be two-fold: Firstly, establishing a material
segmentation model that is able to provide more granular material
classification output and secondly, using material parameter esti-
mation methods, as proposed in Ren et al. [38], to estimate ideal
parameters from the vision-based material output to achieve more
realistic sounds.

Although both the real and the virtual object are involved in the
sound-producing interaction, our study only sonified the tapping ac-
tions on the real surfaces in the scene, purposefully excluding the
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modeling of the virtual object (stick) involved in the collision to
examine the material-based approach in an isolated manner. How-
ever, to achieve a comprehensive simulation of the interaction, a
bidirectional interaction between both objects, the real and the vir-
tual, should be modeled. On top, adding more diverse action types
like sliding, bowing, or scratching would further enhance the inter-
action capabilities.

In our study, we decided against including a condition without
sound, as we were interested in the interplay of multiple senses.
However, although the generic audio was incongruent, it still pro-
vided an auditory cue, making it difficult to assess its specific influ-
ence, e.g., on material identification accuracy, sound helpfulness,
and confidence. Generic sounds, beyond being non-helpful, can
even be detrimental to the user’s ability to correctly identify the
material of a real object, especially when the visual appearance of
a material is ambiguous. For example, if an object could be ei-
ther glass or plexiglass, and the generic sound is more similar in
pitch and reverb to the impact sound of plexiglass, users may un-
consciously rely on this misleading auditory cue, leading to incor-
rect identification. This can further lead to a misjudgment of de-
cision confidence and sound helpfulness. In contrast, the absence
of sound, i.e., in a purely visual condition, might limit confidence
but does not introduce conflicting sensory information that biases
the user’s decision. This perceptual asymmetry is important. While
silence preserves ambiguity, generic sounds introduce false speci-
ficity. In this sense, generic sounds function not as neutral place-
holders but as active confounders, potentially resulting in worse re-
sults than a silent condition. Despite the confounders that a generic
sound introduces, we purposely chose to use it in our baseline con-
dition to mirror the current industry standard. Our goal was not to
compare against silence, but to investigate whether material-based
audio offers perceptual benefits over existing, generic audio design.
However, we want to emphasize that our findings call attention to
the potential negative perceptual consequences of using generic au-
dio in current commercial XR systems and urge headset manufac-
turers and software developers to consider these modulatory per-
ceptual effects when making audio design choices.

6.2 Application Areas

Multiple potential application areas for the proposed sonification
framework come to mind. For one, the material-based sounds could
be used to convey more detailed information about object material-
ity to blind or visually impaired users. Multiple works have shown
that audio augmented reality can support blind or visually impaired
users in perceiving and navigating their environment [39, 50, 18].
Our system could, for example, be used to augment a white cane
with more granular sensory information about the materiality of the
ground to facilitate navigation and support tactile understanding of
the environment.

This material-based sonification method could furthermore be
applied to medical use cases. Schiitz et al. [42] already introduced a
physics-based sonification approach for medical applications such
as tumor localization. While their work is limited to pre-defined
models of the human anatomy, the framework presented in this pa-
per could expand the use of physics-based sounds to medical AR
applications. In minimally invasive laparoscopic procedures, for
instance, the surgeon inserts instruments into the abdominal region
via small incisions in the skin. This rids the surgeon of direct visual,
audio, and haptic interaction with the anatomy. In this case, real-
time audio feedback based on endoscopic images from inside the
body could provide important textural information about the human
tissue and thus increase awareness of human tissue properties. This
could be helpful in distinguishing between cancerous and healthy
tissue, potentially enhancing surgery outcomes. However, as our
study showed, sounds can influence or alter our perception of ma-
teriality. As sound has the power to influence our decision-making

and behavior [1], sonic interactions in surgical applications must be
designed with careful consideration of their perceptual impact. To
ensure high safety standards in medical applications, robust audi-
tory cues should be targeted.

Besides the outlined use cases in accessibility and medical tech-
nology, material-based sonification could enhance AR training ap-
plications where users interact with virtual tools on real objects
(e.g., assembling parts). Here, material-based audio could im-
prove realism and skill transfer. In addition, telepresence in remote
collaboration settings [54] could benefit from realistic interaction
sounds to make remote user actions feel more believable, thereby
improving presence.

6.3 Future Work

A possible extension of our work could be the inclusion of the
real object’s shape, size, and context into the sonification pipeline.
Achieving this within a modal synthesis framework would require
real-time 3D reconstruction to obtain object geometries. With rapid
advances in computer vision and the increasing computational ca-
pabilities of AR headsets, this may soon become feasible.

Touch interactions with physical objects are accompanied by vi-
sual, auditory, and haptic feedback. Touch was not considered in
our work, but is instrumental to achieving fully realistic interaction
experiences. Future work could investigate the addition of this sen-
sory modality.

It would also be interesting to investigate the impact of congruent
and incongruent material sounds on user perception. This would
necessitate the inclusion of a condition presenting ever-changing,
incongruent material sounds instead of the constant generic sound
used in our study. We also did not include a ’no sound” or a “real
sound” condition. We see benefits in including either or both in
future studies where appropriate. A real sound condition could be
especially relevant in work primarily focused on achieving high-
fidelity sound synthesis. To implement a “real sound” condition,
high-quality, controlled audio recordings of all relevant material-
object interactions would be required. These recordings would then
need to be mapped to specific interactions in the AR system, requir-
ing precise real-time collision detection, timing synchronization,
and spatial audio rendering to ensure perceptual alignment. Imple-
menting such a control condition introduces significant technical
complexity, but it might be worth incorporating in a study focused
on audio fidelity.

7 CONCLUSION

We introduced a material-based sonification framework that uses
scene understanding and physical modeling sound synthesis to
generate context-aware sound for AR interactions in real-time.
The resulting material-based sounds establish audiovisual congru-
ence during real-virtual object interactions in AR. In a user study
comparing our congruent, material-based sounds to incongruent,
generic sound effects, participants rated interactions with material-
based sounds as significantly more realistic. Furthermore, material-
based sounds enabled more accurate and confident differentiation
of visually similar materials. These results suggest that context-
aware, material-based auditory feedback can strengthen the percep-
tual connection between users and their physical environments dur-
ing AR interactions. We hope that future research will build upon
our findings and that commercial AR systems will increasingly in-
corporate realistic, context-aware sound feedback to enhance user
experience.
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