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A Framework for Multimodal Medical Image Interaction
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Fig. 1: Physically informed Multimodal Medical Image Interaction (MMII) Framework

Abstract—Medical doctors rely on images of the human anatomy, such as magnetic resonance imaging (MRI), to localize regions of
interest in the patient during diagnosis and treatment. Despite advances in medical imaging technology, the information conveyance
remains unimodal. This visual representation fails to capture the complexity of the real, multisensory interaction with human tissue.
However, perceiving multimodal information about the patient’s anatomy and disease in real-time is critical for the success of medical
procedures and patient outcome. We introduce a Multimodal Medical Image Interaction (MMII) framework to allow medical experts
a dynamic, audiovisual interaction with human tissue in three-dimensional space. In a virtual reality environment, the user receives
physically informed audiovisual feedback to improve the spatial perception of anatomical structures. MMII uses a model-based
sonification approach to generate sounds derived from the geometry and physical properties of tissue, thereby eliminating the need for
hand-crafted sound design. Two user studies involving 34 general and nine clinical experts were conducted to evaluate the proposed
interaction framework’s learnability, usability, and accuracy. Our results showed excellent learnability of audiovisual correspondence as
the rate of correct associations significantly improved (p < 0.001) over the course of the study. MMII resulted in superior brain tumor
localization accuracy (p < 0.05) compared to conventional medical image interaction. Our findings substantiate the potential of this
novel framework to enhance interaction with medical images, for example, during surgical procedures where immediate and precise
feedback is needed.

Index Terms—Multimodal interaction, Audiovisual feedback, Sonification, Physical modeling synthesis, Virtual reality, Augmented
reality, Human-centered design, Human-computer interaction, HCI, Medical images, Medical image interaction, Surgical navigation,
Brain surgery, Brain tumor, Tumor localization.
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Many clinical tasks, ranging from diagnosis to surgery, necessitate so-
phisticated interaction with multimodal medical image data, presenting
a significant challenge due to the intricate nature of these data and the
high precision and expertise required. These data are often presented
as static volumes and, in some cases, as time-indexed sequences. For
instance, a radiologist might be faced with assessing a patient’s condi-
tion based on Magnetic Resonance Imaging (MRI) scans, a series of
two-dimensional (2D) images of the patient’s anatomy. Up to three 2D
MRI slices need to be navigated and processed simultaneously by the
radiologists during diagnosis. Surgical procedures pose an even greater
challenge, requiring unparalleled spatial and temporal coordination,
precision, and advanced motor skills. This pushes surgeons’ cognitive
abilities to their limits. Consider the example of brain tumor surgery,
where the surgeon must consider medical image data to navigate sur-
gical tools to a tumor via a restricted access point while monitoring
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numerous critical structures, such as vessels and nerves that closely
surround the target area, making the task exceedingly difficult.

A precise and dynamic delivery of crucial information regarding
the patient’s anatomy and physiology, facilitating robust and reliable
perception of high-dimensional medical data, is essential for the success
of medical procedures.

Research in cognitive psychology has shown that causally corre-
lated multimodal feedback can activate specific brain regions [37, 47],
leading to enhanced task performance and reduced cognitive load [44],
particularly in tasks involving the localization and tracking of moving
objects. The human visual system operates efficiently by organizing
objects spatially, yet it struggles with tracking multiple streams of
dynamic objects [15]. Furthermore, visual feedback can sometimes
distract users from the primary task area and challenge the user’s hand-
eye coordination if not displayed efficiently. Conversely, the human
auditory system excels at perceiving subtle changes in multi-layered
data on a fine temporal scale in an omnidirectional manner. We aim
to leverage the benefits of the visual and the auditory domain through
multimodal interaction.

While there are works combining audio and visual feedback in Mixed
Reality settings for medical tasks [9, 26, 43], they provide simplified
interactions through navigational cues on the location or orientation of
medical instruments. This interaction approach can be restrictive, as it
prescribes specific actions to the user. Instead, our goal is to augment
the medical expert’s perception while preserving their decision-making
autonomy. To achieve this, we propose a method that enhances their
perception of human anatomy during the medical task through multi-
modal interaction. By introducing an interactive audiovisual technique,
we aim to capture the complexity of medical data and intuitively present
it to clinicians in a dynamic manner. The proposed modules combine
anatomical data derived from biomechanics research with medical imag-
ing data, offering expert users comprehensive and realistic information.

To evaluate the method’s effectiveness, we carried out two user
studies. The first study aimed to assess the capability of 34 general
users to learn correlations between the visual anatomy representation
and its auditory cues, while the second study focused on determining
the usability and accuracy of the method by testing it with nine expert
users specialized in neuroradiology and neurosurgery. The results
of our studies confirmed that the proposed framework can enhance
medical image interaction.

Our work provides the following main contributions:
1. We introduce a physically informed multimodal interaction frame-

work for medical experts that provides spatial audiovisual feed-
back.

2. We generate auditory representations of anatomical structures
using a physically informed sonification model, optimized for
real-time applications.

3. We report results from a user study involving 34 volunteers,
demonstrating a significant learning effect of the audiovisual
representations of anatomical structures.

4. We report results from a user study with four neurosurgeons and
five neuroradiologists proving significantly enhanced accuracy in
brain tumor localization when using MMII.

2 RELATED WORK

2.1 Medical Image Representation and Interaction
Traditionally, three-dimensional (3D) medical images, e.g., from com-
puted tomography (CT) imaging or MRI, are displayed as sectional
images. Sectional images depict a slice of the body. Compared to 3D
anatomy views, they prevent structures from overlapping and thus allow
for a clear view of all tissue on the sectional image while improving the
examination of soft tissue. Three sectional images are commonly used
to navigate the medical image data during diagnosis or treatment tasks.
The three standard planes are sagittal, coronal, and axial. The sagittal
plane divides the body into the left and right sides. The coronal plane
divides the body into posterior (back) and anterior (front) parts, while

the axial plane divides the body into its upper and lower parts [30]. The
downside of cross-sectional anatomy is the lack of three-dimensional
spatial relationships. At the same time, interpretation of 3D structures
from anatomical features in cross-sectional images is challenging [5].

To overcome these drawbacks, 3D anatomy views have been intro-
duced to enhance the visuospatial perception of anatomical structures.
3D views are advantageous in understanding the position, shape, size,
and relationship with neighboring anatomical structures, fostering three-
dimensional anatomy understanding. Especially for users with lower
visual-spatial abilities, stereoscopic Augmented Reality (AR) 3D views
have been shown to improve anatomy learning compared to desktop-
based 3D visualizations [7]. Combining 3D anatomy views and 2D
sectional images has also proven to enhance medical image interpreta-
tion and anatomy learning [29]. In addition, direct manipulation of 3D
anatomy views has been reported superior to passively viewing interac-
tions [25]. Another approach to 3D medical image interaction utilizing
embodiment to improve the learning experience is the screen-based AR
system called Magic Mirror that enables users to explore anatomy in
relation to their own body [6, 8, 10]. Apart from education, 3D views
presented in medical AR [36] are used in image-guided surgery to
enhance surgical planning and decision-making during surgical tasks.
Medical AR has proven the potential to increase precision, for exam-
ple, in orthopedic surgery [2, 14]. Another study proved significantly
enhanced precision when using 3D anatomy views over 2D views for
a contouring task during Virtual Reality-based radiotherapy treatment
planning [12].

However, most often, the spatial augmentations remain visual. Some
works have focused on audiovisual interactions to leverage the potential
of multiple senses in conveying spatial information during medical
tasks. Among these works is an audiovisual AR system that uses
auditory and visuotemporal guidance to improve the 3D localization
of occluded anatomy. The study showed enhanced needle placement
accuracy when using audiovisual guidance [9]. A work from 2017
showed an audiovisual AR system for laparoscopic procedures. How-
ever, no significant improvements of audiovisual over visual AR were
reported [26]. A study that sonified and visualized the position and
angle of a magnetic coil used in transcranial magnetic stimulation
resulted in improved usability of audiovisual over unimodal, visual
guidance [43].

Notably, the above studies provided audiovisual feedback on the
placement of medical instruments rather than information on the nature
of the anatomical structures. To the best of our knowledge, no audiovi-
sual feedback based on anatomical structures’ geometric and physical
properties has been proposed so far.

2.2 Sonification
Research has explored non-visual AR solutions [31], focusing on com-
parisons between audio-tactile and visual guidance, and has investigated
aural augmented reality [51], highlighting its use in navigation, edu-
cation, and healthcare. Sonification - the process of conveying data
through sound in a systematic, objective, and reproducible way - can
significantly improve user experience in interactive systems and inter-
faces [22]. This approach is widely used in interaction design to not
only create dynamic and immersive experiences but also to transmit
information, offer feedback, and shape user behavior [18]. Sonification
techniques such as audification and parameter-mapping sonification
(PMSon), along with more recent developments such as model-based
sonification (MBS) [11, 23], have been crucial in transforming diverse
data patterns into auditory experiences that are both perceptible and
intuitive. These techniques enable users to understand the data, track
its changes, gain insights, and detect patterns within it.

In this work, we exclusively examine medical applications of inter-
active sonification, investigating essential methodologies grounded in
psychoacoustics as the backbone of these applications.

Audification, the process of directly translating data waveforms
into the audible domain, serves as a foundational technique in the
medical field, reminding us of traditional tools like the stethoscope or
heart rate monitors. This method has been employed to convey simple
physiological signals in an auditory form. Researchers have explored
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audifying bioelectric signals to listen to brain activities [46]. However,
directly converting these data into audio signals often results in noisy
and hard-to-understand outputs. Achieving meaningful results through
audification typically necessitates advanced, sometimes invasive, sen-
sory technologies capable of extracting significant information from
the body at audio rates.

The challenge of generating understandable sounds from data has
prompted researchers to turn to alternative sensory modalities, such
as visual inputs from cameras, converting them into a simpler, low-
dimensional space to establish meaningful mappings to acoustic pa-
rameters such as pitch and amplitude. The method, called parameter
mapping sonification (PMSon), leverages an explicit mapping func-
tion to accurately control the output, reducing noise and enhancing the
clarity of the auditory representation. PMSon has become the preferred
technique in sonification, especially in the medical field.

In medical sonification, PMSon has been widely used in translat-
ing the position or state of navigated surgical instruments relative to
particular structures [33, 41, 49], converting spatial characteristics of
medical imaging data into acoustic features [1], and in transforming
signals derived from surgical devices, such as blood loss monitors or
oximeters, into sound [32]. PMSon has proven particularly effective in
augmenting image-guided navigation, offering notable improvements
in accuracy and guidance [19, 35, 52].

Fundamental studies [16] on the impact of mapping strategies in
sonification have identified pitch as the primary auditory dimension
commonly used in mappings. Efforts to expand mapping from one-
dimensional [39] and two-dimensional data [35, 53, 55] to three or-
thogonal dimensions [52, 54] have shown promise in enhancing spatial
awareness. However, the learnability and intuitiveness of these tech-
niques, particularly for critical applications such as surgery, remain
uncertain.

Conversely, the issue of effectively implementing auditory guidance
for multidimensional tasks has been addressed by Kantan et al. [28],
suggesting that simplifying multidimensional tasks into unidimensional
tasks could lead to more efficient outcomes. In this approach, users
process each dimension and its corresponding sound property sequen-
tially rather than dealing with concurrent guidance presentations. This
method has been shown to reduce completion times and interruptions,
ultimately imposing a lower cognitive load.

However, since most medical applications focus on tool navigation,
requiring the modeling of data across Cartesian or polar coordinate
systems in multidimensional space, neither simultaneous multidimen-
sional mapping nor sequentializing into multiple navigation steps is
optimal. This complexity hinders the scalability of these models, es-
pecially when tracking multiple objects of interest, leading to reduced
intuitiveness and prolonged learning periods. Furthermore, the task of
enhancing data dimensionality with PMSon to accurately depict com-
plex physical features such as anatomical shapes and textures presents
a significant challenge.

Schütz et al. [42] developed a method that, contrary to the sonifica-
tion of a tool’s distance to a predefined target, employs an interactive
sonification for shape exploration to convey anatomical shapes, thus
improving the understanding of geometrical configurations through
sound. Nevertheless, this approach only provides sonification of 2D
shapes, limiting its suitability for more complex applications.

Yet, sound uniquely enables the conveyance of multilayered infor-
mation through the simultaneous presentation of multiple data streams,
capitalizing on one of its inherent strengths. Auditory sensations, char-
acterized by qualities such as brightness, roughness, fullness, and
sensory pleasantness, as described in [56], are inherently multidimen-
sional. This is indeed due to their reliance on the spectral distribution
of frequencies. Such multidimensionality greatly expands the scope for
developing sonification models and mappings, allowing for a compre-
hensive representation of data complexity through detailed mappings.

Model-based sonification (MBS) transforms high-dimensional data
into auditory models, facilitating the representation of intricate data
patterns, including medical image data. As highlighted in [34], this
method incorporates the multifaceted nature of medical images into a
sound-based framework, producing a rich and nuanced auditory output.

Despite its potential, the feasibility of applying these techniques in real-
time interactive scenarios remains uncertain, calling for further investi-
gation to fully understand and leverage their capabilities in dynamic
environments. The construction of sound models in MBS is commonly
achieved through physical modeling synthesis, as documented by [13].
This technique aims to mimic the physical characteristics of real-world
instruments, effectively emulating the behavior of actual objects. A
prominent instance of such mathematical simulations is the Modalys
software environment [17], which facilitates physical modeling synthe-
sis through the application of the finite element method. This involves
solving differential equations related to a vibrating system, allowing
the model to capture the system’s dynamic attributes, including natural
frequencies, damping factors, and mode shapes.

This literature review highlights a gap in systems that provide dy-
namic, interactive feedback that effectively incorporates the physical
characteristics of human anatomy in a distinct, multi-layered, and
intuitive manner. There is a lack of systems that are easy to learn,
combining both auditory and visual feedback. In discussing sonifica-
tion for medical applications, it is crucial to consider the physics of
the underlying anatomical structures. This consideration is essential
for designing models that are not only extendable but also maintain
system intuitiveness. Furthermore, the majority of existing studies have
adopted a broad approach without sufficiently incorporating the users’
background knowledge, particularly their medical expertise.

3 MULTIMODAL MEDICAL IMAGE INTERACTION FRAMEWORK

We propose a multimodal medical image interaction (MMII) framework
that provides dynamic audiovisual feedback during interaction with
medical image data (Figure 1). Unlike conventional unimodal interac-
tion methods this audiovisual feedback provides detailed information
on the anatomy’s geometry, texture and size. The MMII framework
takes medical images and physical properties of the respective tissue
as input to create a visualization and sonification model. Through user
interaction with these models real-time physically informed audiovisual
feedback is generated.

3.1 Causality-Informed Framework
Medical professionals have a deep understanding of complex anatom-
ical structures through extensive education and practical experiences.
This knowledge enables them to effectively associate auditory repre-
sentations with anatomical data, provided the sonification model has
causal relevance to the context. This aspect highlights the importance of
user-centered design, which accounts for users’ pre-existing knowledge
to enhance their interpretation and interaction with medical data.

We propose a causality-informed method for anatomical sonification,
focusing on the energetics of sound events - the diverse energetic flows
involved in generating sonic phenomena. Sound, in reality is causal,
event-based, and relational. It occurs when energetic phenomena os-
cillate at specific rates and intensities, with these waves propagating
across multiple activity zones. A sound event is considered to have
occurred only when listeners introduce their perceptual point of access
to the soundscape through their entanglement with its complex develop-
ment. Our approach challenges the often technical abstraction-focused
literature, advocating for a relational ontology that considers the ener-
getic, matter, resonance, and perception-action interplay. Designing
a causality-informed framework requires addressing key ontological
questions: What generates sound, why does it occur, and how do
listeners engage with it?

The causality-informed method enables us to use proximity-based
sonification in an efficient and distinctive manner. Instead of treating
proximity as an abstract n-dimensional concept that initiates sound pro-
duction upon changes in relational proximity, we integrate anatomical
knowledge from the interaction context. By localizing and adjusting
the perceptual access point to objects based on the location of the
user-guided interaction point, we aim to improve the perceptibility of
proximity. This approach is considered particularly effective for dy-
namically active phenomena such as heart rate variability. Following a
causal approach, we facilitate user interaction with a resonating model
to deduce structural insights from sonic feedback. Thus, distinct timbral
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Table 1: Physical properties of the anatomical structures used in Study 1 based on research in biomechanics1 [3,4,27]: stiffness (Young modulus
(kPa)), density (kg/m3), Poisson’s ratio

Tissue Young modulus (kPa) Density (kg/m³) Poisson’s ratio

Rigid Vertebra (bone) 50 - 20,000 1908 ± 133 0.2 - 0.3
Blood Vessel Wall 1,000 - 20,000 1102 ± 64 0.2 - 0.3
Intervertebral Disc (cartilage) 0.3 - 1,000 1100 ± 1 0.1 - 0.49

Semi-rigid Spinal Cord 0.5 - 20 1075 ± 52 0.45 - 0.49
Soft White Matter 0.5 - 3.5 1041 ± 2 0.4 - 0.5

Grey Matter 0.5 - 2.5 1045 ± 8 0.4 - 0.5
Glioma (brain tumor) 0.1 - 1.5 tumor grade dependent 0.3 - 0.5

differences arise between objects with varying textures and structures,
engaging listeners as active participants in the exploration process. ers
as active participants in the sound generation process.

3.2 Human Anatomy and Tissue Characteristics
Human anatomy constitutes the input to the MMII framework. Begin-
ning with chemicals and progressing to cellular structures, we observe
a hierarchical organization in the human body. At a higher level of
abstraction, tissues serve as the foundational elements of all anatomi-
cal structures within the human body. The complex human organism
comprises four basic tissue types: nervous, epithelial, muscle, and
connective tissue. Examples of nervous tissue are the spinal cord or
grey matter in the brain. An example of epithelial tissue is the simple
squamous epithelium forming the wall of an artery. The cardiac muscle
is an exemplary muscle tissue; connective tissue can be found in bones,
blood, and even cartilage. These tissues are the building blocks of every
organ, such as the spinal cord and the brain, which in turn form organ
systems, exemplified by the human central nervous system.

Tissues act as the foundational fabric of the body, intricately woven
into the smallest units vital for modeling anatomical structures. These
structures significantly affect the dynamic behavior of organisms and
are essential in physical modeling sound synthesis. Utilizing the me-
chanical properties of tissues, such as density, elasticity, energy loss,
and Poisson’s ratio, enables the simulation and creation of anatomi-
cally relevant soundscapes. There is a significant body of research in
biomechanics providing detailed data on these physical properties of
tissue1 [3, 4, 27], suitable for our modeling purposes, as indicated in
Table 1. Figure 2 depicts a rough placement of the anatomical structures
used in Study 1 along their physical properties.

Moreover, the geometrical configuration and morphological char-
acteristics of anatomical structures are pivotal in determining their
dynamic behaviors. These aspects significantly impact the processes of
visualization and sonification through wave propagation within struc-
tures, emphasizing the dynamic interaction between texture, shape, and
function in biological systems. Such interconnections are critical in the
development of the proposed causality-informed framework. Medical
imaging techniques, including CT, MRI, and ultrasound, allow for visu-
alizing anatomical structures by transforming signals from the imaging
system into image intensity values. This transformation facilitates the
identification of shapes and patterns, making these methods essential
for accurately depicting the geometrical configurations of anatomical
structures and providing vital data for their precise mapping.

3.3 Visualization Model
Following a causality-informed approach, the visualization model aims
to portray a realistic representation of the geometry of human tissue.
Segmentations of task-relevant anatomical structures are obtained from
the medical image data. The segmentations were turned into surface
meshes. Triggered by user interaction, real-time visual feedback was
created. Among dynamic visual changes, we experimented with scal-
ing and colorization effects. Colorization effects were achieved by
adjusting the albedo value of the meshes’ materials in Unity2. Besides

1https://itis.swiss/virtual-population/tissue-properties/database/density/
2Unity (https://unity.com/)

changes in material or color, we can imagine a wide array of visual
feedback. 3D model deformation could, for example, be suitable for
achieving causality-informed visual feedback.

3.4 Interaction
A causal relation is also maintained in the user’s interaction with the
MMII framework by adopting an event-based interaction. Just like
playing an instrument creates time-based output from time-based user
input, a single input event to the MMII framework will also create a
singular, real-time output. Analogous, continuous user input will result
in a continuous audiovisual output.

3.5 Sonification Model
The proposed sonification model draws inspiration from the general
framework introduced in [34], yet distinguishes itself through the fol-
lowing points:

The framework outlined in [34] presents a broad definition, claiming
that any medical image data can be sonified using this approach. The
process involves extracting all requisite details for model definition
directly from medical images, leading to a highly intricate and detailed
modeling process. It introduces a predominantly conceptual design
framework that, while intriguing from a methodological standpoint,
provides limited examples to showcase its applicability. Moreover, its
feasibility, particularly for real-time applications and rapid prototyping
for realistic experimental scenarios, remains unexplored.

To address these challenges, we streamlined the modeling process
by utilizing two distinct datasets: the physical properties of the targeted
tissue (Table 1) and the geometrical shape of the relevant anatomi-
cal structures (Figure 2). These structures are derived from medical
images, as described in the previous section. They are defined as a
polygon mesh, a collection of vertices, edges, and faces that determines
the shape of an object using a finite number of quadrilaterals. This
setup allows for the numerical solution of the model, particularly the
calculation of the displacement of each vertex, through differential
equations. Consequently, the model can capture the system’s dynamic
attributes, including natural frequencies, damping factors, and mode
shapes. To initialize the model, the physical properties of the targeted
tissue, including elasticity, density, and Poisson’s ratio, are mapped to
the model parameters.

Through this, we optimize the model’s complexity while ensuring
it retains the necessary effectiveness in generating distinct acoustic re-
sponses suitable for the proposed application. As a result, this approach
expands the scope of sonification modeling, encompassing a diverse
array of anatomical structures for real-time applications.

For sound generation, the model must be excited by applying force
to one or more vertices. This enables the calculation of each node’s
displacement in an oscillatory form, which is then extracted as an audio
signal from one or more vertices. Altering the positions of the input
and output vertices significantly affects the resulting sound. Utilizing
this model, we create acoustic virtual models capable of producing
anatomically informed audio signals through user interaction. This
approach integrates crucial anatomical information into the synthesis
process, offering users rich and realistic insights. Finally, through
minimal real-time preprocessing of the signals, including pitch shifting
and amplification, we aimed to enhance the perceptibility of the sounds.
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Fig. 2: Schema of the tissues used in Study 1 along with their physical properties of stiffness, density and poisson’s ratio as well as their resulting
mel spectograms.

For implementing this approach, we utilized the Modalys software [17].
The audio signals produced through this technique are represented in
Figure 2, using a Mel-spectrogram. Readers are also encouraged to
refer to the supplementary video to listen to the corresponding audio
examples.

There’s a notable scenario involving structures that are inherently
dynamic, such as blood flow, which naturally generates vibrations
without any external interaction. In these cases, we use a signal as the
model excitor, specifically generated by a regular heartbeat. Employing
advanced sampling techniques such as granular synthesis, we adjust the
fine-grained samples of a prerecorded audio file of Korotkoff sounds.
This adjustment mimics the variations in blood flow relative to heart
rate, tool position, and the surrounding anatomical structures of the
blood vessels. Korotkoff sounds are captured using a stethoscope or
Doppler device when a blood pressure cuff, positioned distal to the
cuff, modifies arterial flow [40]. Since the circulation depends on
the structural composition of the vasculature, we utilize the granular
synthesizer to stimulate a model that mimics the vessel walls. This
method allows for the simulation of two distinct scenarios: the surgical
tool’s proximity to the vessels and the cutting of the vessels. It does
so by altering the audio based on whether or not the physical model is
engaged.

4 EXPERIMENTS

We conducted two user studies to incrementally test our interaction
framework. The first study evaluated the perceptibility of the audiovi-
sual feedback in an isolated manner. To separate the task complexity
from the audiovisual feedback, we chose a passive interactive setup in
the form of an online study. This enabled us to test the general feasibil-
ity of the framework and the suitability of physical modeling synthesis
to represent human anatomy in the auditory domain. In the second
study, we were interested in evaluating the potential of the proposed
method in a more realistic interaction setup, where the user is provided
with multimodal feedback while focusing on a time-sensitive medical
task in a Virtual Reality environment. Study 2 focused on the usability
and accuracy of the framework for a medical localization task, more
precisely, brain tumor localization. The two studies sought to answer
the following research questions:

• Can users learn the audiovisual correspondence of the auditory
and visual representation of anatomy? (Study 1)

• Is physical modeling synthesis a suitable sonification approach
to create distinguishable auditory representations of anatomy?
(Study 1)

• Can audiovisual interaction improve the usability and accuracy of
a medical localization task? (Study 2)

5 STUDY 1 - MULTIMODAL CORRESPONDENCE LEARNING

We chose to conduct an online study to test the learnability of our
framework and determine how well the different anatomical structures
can be distinguished based on sound. The online questionnaire was
taken on desktop and laptop computers. To test our framework for a
wide range of human tissue, we chose two areas of the body contain-
ing structures of varying physical properties: the spine and the brain.
Four diverse spine structures and three brain structures were selected:
vertebras (bone), vertebral arteries (blood vessels), intervertebral discs
(cartilage), spinal cord (nerves), grey matter, white matter, and brain
tumor.

5.1 Study Implementation
The online questionnaire was created with SoSci Survey3. Video clips
and sound samples were used to simulate the audiovisual interaction.
The video and sound files are recordings of a system built in Unity
and Max4. Two scenes were prepared in Unity, one containing the
structures of the cervical spine5 and one containing the structures of the
brain. The 3D brain models were created from MRI image data in the
University of California San Francisco Preoperative Diffuse Glioma
MRI (UCSF-PDGM) dataset publicly available on the National Cancer
Institute’s Cancer Imaging Archive6. FAST, FMRIB’s Automated
Segmentation Tool7 was used to segment a mesh of the brain’s white
matter and grey matter from one of the 3D MRI images in the dataset.
A 3D object of the brain tumor segmentation was already provided as
part of the patient data. Blender8 was used to clean and edit the brain
meshes prior to Unity import. The meshes were visualized using surface

3SoSci Survey (https://www.soscisurvey.de/)
4Max (https://cycling74.com/products/max)
5Cervical Spine 3D Model (https://rigmodels.com/)
6Cancer Imaging Archive (https://www.cancerimagingarchive.net/)
7FAST (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST)
8Blender (https://www.blender.org/)
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shaders rendered using physically-based rendering in Unity (Version
2022.3.17f1 LTS). The use of raycasting and mesh colliders enabled
a mouse click interaction. To create visual feedback, the objects’ size
and material changed on click. At the same time UnityOSC9, a Unity
plugin based on Open Sound Control (OSC), a network protocol for
interactive computer music [50], was used to send messages from Unity
to Max. In Max, the incoming OSC messages were routed to the
tissue’s corresponding physical model to generate the audio feedback.
Modalys10 for Max, a software for virtual musical instruments based on
physical models, was used to create instruments from the 3D anatomy
models. The Modalys models were parameterized using the physical
properties of the different tissues found in Tabel 1.

One significant challenge we encountered was that certain struc-
tures did not produce audible vibrations or were particularly difficult to
sonify due to their inherent characteristics. For instance, brain tissue,
being soft tissue, often resulted in sounds that were noisy or inaudible.
Even when these sounds are audible, they might not be easily inter-
pretable. To address this, we modified the signal into an audible and
perceptible sound space by transforming, scaling, and sometimes invert-
ing the information, while crucially preserving the relational context of
these structures in comparison to other objects within the scene. This
approach ensures that users can perceive the data while maintaining the
essential causal relationship of the underlying structures.

5.2 Participants

34 volunteers with a mean age of 32.4 ± 5.9 years participated in the
study. Twelve indicated to be women and 22 to be men. The study
included participants with medical and non-medical backgrounds. Their
occupations ranged from radiologist to biomedical researcher, graphic
designer, and music teacher. None of the participants indicated to
suffer from a hearing or vision impairment. Regarding the participants’
musical experience, 12 indicated listening to music but not making
music themselves, 13 indicated playing one instrument, five indicated
playing more than one instrument on a regular basis, and four indicated
being professional musicians.

5.3 Study Procedure

The online study followed a within-subject study design. The par-
ticipants were first asked some questions about their demographic
background, such as age, gender, their medical and musical knowledge,
before they were guided through a training section explaining the in-
teraction framework and providing videos showcasing the simulated
audiovisual interaction with all the spine and brain structures. The
training section was not time-constrained, and the participants had the
chance to get acquainted with the sounds and visuals until they felt
confident enough to proceed to the test section.

The test section was subdivided into two parts: Audio to Visual
and Visual to Audio (Figure 3). In the Audio to Visual (A2V) part the
participants were provided with a sound sample and asked to choose the
correct visual correspondence from a set of three videos without sound.
In the Visual to Audio (V2A) part, they were given a video clip without
sound, for which they had to select the corresponding audio file from
a set of three answer options. Both parts, A2V and V2A, contained
seven questions followed by a raw NASA-TLX [20, 21]. The two
question types were contained in both stages of the study: single and
multiple structures. The stages were executed in the order mentioned.
In the single structure phase, the participants had to select one visual
corresponding to one sound (A2V) or vice versa (V2A); in the multiple
structures phase, they had to select the correct sequence of two sounds
corresponding to the order of two visuals (V2A) or vice versa (A2V).
The order of the A2V and V2A parts was randomized within the single
and multiple structures stage. The online questionnaire concluded with
a few open questions to capture qualitative feedback on the visual and
sound design.

9UnityOSC (https://thomasfredericks.github.io/UnityOSC/)
10Modalys (https://support.ircam.fr/docs/Modalys/current/)

5.4 Results
5.4.1 Performance and Task Load
Participants whose rates of correct answers fell outside the range of the
mean ± three standard deviations were considered outliers. Our criteria
for outlier detection did not identify any outliers. Given the binary
nature of the study’s output values, with responses categorized as either
’correct’ or ’incorrect,’ we employed McNemar’s test to assess the sta-
tistical significance of the correct answers across two paired conditions:
V2A vs. A2V (Table 2), and single vs. multiple structures (Table 3).
McNemar’s test revealed a statistically significant effect of modality on
response accuracy (p < 0.01). A2V resulted in a significantly higher
rate of correct answers than V2A (Table 2). Similarly, a comparison
between the single and multiple structures stage demonstrated a sig-
nificant effect (p < 0.001), suggesting that the number of structures
influenced response correctness (Table 3).

We conducted paired samples t-tests for each NASA-TLX subscale
since the assumption of normality for the differences between paired
scores was verified using the Shapiro-Wilk test. The analysis revealed
significant differences (p < 0.001) in overall task load (NASA-TLX)
between V2A and A2V tasks (Table 2). Participants reported signifi-
cantly lower overall task load (p < 0.001) and Frustration (p < 0.001),
and significantly better Performance (p < 0.001) for the A2V task
when compared to V2A. Conversely, Mental Demand (p < 0.05), Phys-
ical Demand (p < 0.05), Temporal Demand (p < 0.05), and Effort
(p < 0.001) were rated significantly higher under the A2V condition
(Figure 4). No significant differences in task load were reported for the
single versus multiple structures stage (Figure 5).

5.4.2 Qualitative Feedback
The participants found identifying sounds of hard structures like bone
easier than soft structures such as brain tissue. They especially re-
quested more apparent sound differences between the brain tissues
(white matter, grey matter, tumor). They noted that some sounds were
dominant and distinct, making them easy to recognize. However, others
were too similar, and thus, distinction was hampered. Participants were
more certain of their answers when the questions involved these dom-

Table 2: Means and standard deviations of rate of correct answers (in
%), overall task load and NASA-TLX subscales ([0, 100]; smaller better)
for the V2A and A2V question types in Study 1 summarized across the
single and multiple structures stages

n = 34 Visual to Audio Audio to Visual

Rate of correct answers (%) 0.67 ± 0.47 0.75 ± 0.44
NASA-TLX - Overall 42.76 ± 30.37 41.78 ± 29.52
NASA-TLX - Mental Demand 55.64 ± 28.69 57.48 ± 26.10
NASA-TLX - Physical Demand 13.03 ± 14.19 14.23 ± 15.92
NASA-TLX - Temporal Demand 32.53 ± 26.34 34.05 ± 28.03
NASA-TLX - Performance 52.47 ± 27.17 46.75 ± 27.76
NASA-TLX - Effort 55.06 ± 27.37 52.11 ± 25.02
NASA-TLX - Frustration 48.30 ± 30.96 46.06 ± 30.80

Table 3: Means and standard deviations of rate of correct answers (in %),
overall task load, and NASA-TLX subscales ([0, 100]; smaller better) for
the single and multiple structures stages in Study 1 summarized across
V2A and A2V question types.

n = 32 Single Multiple

Rate of correct answers (%) 0.63 ± 0.48 0.78 ± 0.42
NASA-TLX - Overall 42.91 ± 29.36 41.63 ± 30.52
NASA-TLX - Mental Demand 57.98 ± 25.41 55.14 ± 29.26
NASA-TLX - Physical Demand 12.42 ± 12.79 14.84 ± 17.00
NASA-TLX - Temporal Demand 33.03 ± 26.39 33.55 ± 28.00
NASA-TLX - Performance 51.25 ± 27.10 47.97 ± 28.03
NASA-TLX - Effort 54.92 ± 23.43 51.75 ± 28.72
NASA-TLX - Frustration 47.86 ± 30.60 46.50 ± 31.18
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Fig. 3: Two question types in Study 1: Audio to Visual (A2V) and Visual to Audio (V2A). In A2V a sound was played and its visual correspondence
had to be selected; in V2A a visual was shown and its audio correspondence had to be selected from a choice of three audio files. Mel spectograms
are used to symbolize the audio files in this figure.

Fig. 4: NASA-TLX task load ratings for Visual to Audio (V2A) and Audio
to Visual (A2V) question types in Study 1.

Fig. 5: NASA-TLX task load ratings grouped by the single and multiple
structures stage in Study 1.

inant, distinct sounds. When asked how to improve the sonification,
they responded, "make the sounds more different from each other" and
"make brain sounds softer". Overall, they found the visualizations were
appropriate for the purpose.

5.5 Discussion Study 1

Our results showed that users are capable of creating audiovisual as-
sociations between visual and audio representations of anatomical
structures in a relatively short amount of time regardless of musical
expertise. A significant increase in correct answers (p < 0.001) from
63.4% in stage one (single structures) to 77.9% in stage two (multiple
structures) indicates that the MMII framework is learnable. Although
the complexity of the task increased in stage 2 (multiple structures)
the rate of correct answers increased. The study furthermore answered
our second research question by proving the suitability of physical
modeling synthesis for anatomy sonification.

The NASA-TLX Performance subscale showed that the participants’

subjectively perceived performance aligned with their objective per-
formance. They were overall more accurate in the A2V task and the
multiple structures stage.

While the online format helped the generalisability of our results
by reaching a larger and more diverse group of participants, offering a
direct instead of a passive interaction might have improved the transfer-
ability and relevance of the Study 1 results to Study 2. Furthermore, a
study comparing musical experts with non-musicians might result in
interesting findings.

6 STUDY 2 - MULTIMODAL BRAIN TUMOR LOCALIZATION

After having proven that MMII has the potential to establish audiovisual
associations for anatomy structures, we conducted a second study to
examine the framework’s capabilities for a real medical task. We eval-
uated the framework for brain tumor localization with neurosurgeons
and neuroradiologists. Localization of the tumor area is, for example,
performed during diagnosis or surgery. During diagnosis, the tumor is
identified, and its location is determined in a radiology report. During
surgery, the tumor needs to be localized to plan a surgical approach that
will prevent damage to functional regions of the brain and determine
the volume to be resected from the patient’s brain. This task requires
simultaneous integration of information from several sources, such
as slice views, instrument location, and monitoring numerous critical
structures in the brain. This task pushes surgeons’ cognitive abilities
and thus presents a stellar use case for multimodal feedback. To test the
localization task in a simulated manner, we built a Virtual Reality (VR)
application for the Meta Quest 211. We compared conventional visual
medical image interaction with audiovisual interaction using MMII.

6.1 Study Implementation
The application was built in Unity and Max. To replicate the standard
interaction with medical image data, we included slice views of the
three planes (axial, coronal, sagittal) into the VR environment using the
UnityVolumeRendering package12(Figure 6). In addition, we placed
a 3D model of the brain into the Unity scene. The slice views and the
brain model were created from 3D MRI images of the UCSF-PDGM
dataset. nii2mesh13 was used to convert the NIfTI 3D voxel images of
the tumor and brain segmentations to triangulated meshes. Besides the
grey matter and tumor segmentation, we further included models of the
cerebral arteries as well as the right and left corticospinal tract (motor
pathways). These critical structures must not be cut during surgery,
therefore we decided to include them in our VR environment.

A controller-based interaction with the brain anatomy was chosen for
the localization task. Unity XR Interaction Toolkit (version 2.5.2) was
used. An interaction at a fixed distance from the controller prevented the
controller from occluding the brain model visualization. Two concentric

11Meta Quest 2 (https://www.meta.com/de/quest/products/quest-2/)
12UnityVolumeRendering (https://github.com/mlavik1/UnityVolumeRendering)
13nii2mesh (https://github.com/neurolabusc/nii2mesh)
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Fig. 6: Left: Scene view inside the head-mounted display of the three sectional medical images and the brain during the visual and audiovisual
(MMII) condition in Study 2. Right: Illustration of the sound sphere - the audible range around the point of interaction at the end of the controller ray.
The distance from the interaction point to the anatomical structures defines the amplitude of the structures’ sound.

spheres were attached to the endpoint of a ray in line with the pointing
direction of the controller (Figure 6). The inner white sphere marked
the current point of interaction with the brain model and determined the
location of the three slicing planes. The large green sphere determined
the audible radius around the point of interaction. All structures inside
the sound sphere were sonified. The amplitude of the sounds was
influenced by the distance between the interaction point and the closed
point on the object’s mesh inside the sound sphere. The distance was
normalized for the radius of the sphere.

The audio feedback was triggered by sending OSC messages from
the Android application (running on a Meta Quest 2) to Max (running
on a laptop). The messages included the names of the structures inside
the sound sphere and their respective distance to the point of interaction.
Again, Modalys for Max was used to create physical models from the
anatomy structures. Unlike the previous study, we also made use of
granular synthesis to create a pulsating sound to represent the cerebral
arteries. All sounds were synthesized in Max and played via stereo
speakers connected to the laptop with Aux cable. The streaming latency
was minimal and not perceptible to the human ear.

6.2 Participants
Nine medical doctors took part in the study, one woman and eight men.
The participants had an average age of 30.1 years, with a standard
deviation of 2.8 years. The study included one senior neurosurgeon and
three attending neurosurgeons, as well as one senior neuroradiologist
and four attending neuroradiologists. While the neurosurgeons indi-
cated performing brain tumor surgery on a daily to weekly basis, the
neuroradiologists stated to take brain MRIs and create radiology reports
on a daily to weekly basis. None of the doctors indicated to have a
vision or hearing impairment. Five participants had never used AR or
VR before, two had used AR or VR once before, and two indicated to
have used AR or VR a couple of times. Two doctors indicated listening
to music but not playing any instrument. Three indicated that they knew
how to play an instrument but rarely played it, and three physicians
answered that they regularly played one or multiple instruments.

6.3 Study Procedure
In this comparative study that followed a within-subject design, the
medical doctors used the conventional visual interaction and the novel
audiovisual interaction to localize tumors in a simulated VR setting.
The users were first given an introduction to the MMII framework and
the study procedure. After completing a short survey assessing demo-
graphic background (age, gender, profession), medical and musical
expertise, the training phase of the first of two study conditions started.
During training, the doctors could familiarize themselves with the VR
environment, the controller interaction, and the visual and audio feed-
back. The same task was performed in both conditions. The medical

users had to localize and mark the tumor volume by evenly placing
spheres on the surface of the tumor. They had to localize six tumors
per condition. Both the order of the tumors and the order of the visual
and audiovisual conditions were randomized. After each condition,
the doctors filled out a raw NASA-TLX and a few specific questions
regarding the task and the (audio)visual interaction.

6.4 Data Analysis

We used an overlap-based metric to determine the accuracy of the tumor
localization task. The overlap of the marked tumor area (MT) with the
ground truth tumor area (GT) was measured using the Sørensen–Dice
coefficient, the most commonly used metric in validating medical vol-
ume segmentations [45]. We stored both the location of the 3D tumor
objects and the locations of the user-placed marking spheres in the
Unity coordinate frame. We used the sphere locations as input points to
create a mesh using the ConvexHull function in SciPy14. The volume of
this hull was used as the marked tumor volume in the Dice calculation.

Dice coefficient =
2|MT ∩GT |
|MT |+ |GT |

(1)

6.5 Results

6.5.1 Performance and Task Load

A Shapiro-Wilk test showed the normality of the Dice and NASA-
TLX data. Values outside the mean ± three standard deviations were
considered outliers and removed from the sample. To account for
differing sample lengths after outlier removal, values were randomly
sampled from the larger sample to match the size of the smaller sample.
Since the study followed a within-subjects design, a paired samples
t-test was used to test for significance. A significant difference was
found between the visual and audiovisual Dice data (Figure 7). The
tumor markings placed using the audiovisual feedback resulted in
a significantly higher Dice coefficient value (p < 0.05), indicating
improved localization accuracy when using the audiovisual compared
to the visual feedback.

A Shapiro-Wilk test showed a non-normal distribution of the task
time data. Eight outliers were removed using the interquartile range
method. A Wilcoxon signed rank test showed no significant difference
in task time per tumor between the visual and audiovisual condition
(Figure 7).

No significant difference was found for the task load (NASA-TLX)
results. Table 4 lists the means and standard deviations of the Dice,
task load, and task time results for the visual and audiovisual (MMII)
condition.

14SciPy (https://scipy.org/)
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Fig. 7: Box plots of dice coefficient and task time per trial for both
conditions in Study 2: Visual and Audiovisual (MMII); * = p < 0.05.

Table 4: Means and standard deviations of localization accuracy and task
load for the visual and audiovisual condition in Study 2: Sørensen–Dice
coefficient ([0,1]; larger better), overall task load, individual NASA-TLX
subscales ([0, 100]; smaller better, except Performance - larger better),
task time in seconds.

n = 9 Visual Audiovisual (MMII)

Sørensen–Dice Coefficient 0.48 ± 0.25 0.60 ± 0.28
NASA-TLX - Overall 59.07 ± 14.32 52.96 ± 10.99
NASA-TLX - Mental Demand 82.22 ± 9.72 68.89 ± 15.36
NASA-TLX - Physical Demand 48.89 ± 17.64 44.44 ± 13.33
NASA-TLX - Temporal Demand 53.34 ± 27.84 48.89 ± 24.72
NASA-TLX - Performance 48.89 ± 20.89 54.44 ± 13.33
NASA-TLX - Effort 68.89 ± 21.47 61.11 ± 15.37
NASA-TLX - Frustration 52.23 ± 29.91 40.00 ± 18.71
Task Time 83.73 ± 66.24 100.40 ± 83.84

6.5.2 Qualitative Feedback

The participants stated that the sonification helped them to better per-
ceive the distance to the tumor. They further said that the change in
amplitude depending on the distance was helpful. When asked about
ways to improve the audiovisual interaction, they suggested a "more
nuanced soundscape," "more distinct sounds," and "a sharp onset of a
different sound" once the interaction point enters the tumor volume to
allow for more precise localization. The majority of the participants
felt that the sound characterized the different anatomical structures very
well. When asked which of the two conditions they would like to use in
the future, all nine doctors answered to prefer the audiovisual feedback.

6.6 Discussion Study 2

Our study showed significantly increased (p < 0.05) task accuracy
when using MMII. Although the localization accuracy improved when
using the audiovisual feedback, the Dice coefficient is still relatively low.
This aligns with the doctors’ suggestions to adapt the audio feedback to
be more sensitive to subtle changes in location. Such adaptation would
be needed to increase the precision of MMII and make it suitable for
application in real surgical precision tasks.

While works such as the one by Chen et al. [12] showcase the annota-
tion precision that can be achieved using 3D visualizations for surgical
planning, our work elicits the benefit of reduced mental demand and
frustration when using audiovisual interaction during real-time surgical
interactions. Combining the advantages of both 3D visualizations and
audiovisual interaction could guarantee spatial precision while enabling
perception of dynamic changes during surgeon-anatomy interactions,
leading to increased task performance and confidence.

From a balanced distribution of musical experience among the medi-
cal participants, we can assume that the framework is accessible regard-
less of musical expertise.

We further saw non-significant differences in task load and a non-
significant increase in task time when using multimodal over unimodal
interaction. A study involving a larger group of medical experts could
give insights into the validity of the observed tendency. A further
limitation of our study is the unequal representation of gender. A future

study should try to achieve a balance of gender among the medical
participants to ensure that our claims are valid for the entire population
of users.

7 DISCUSSION

We extensively tested the interaction framework in two user studies.
Eight tissues with varying physical properties and characteristics, from
rigid (vertebra) to soft (brain tissue) and from static (vertebra) to dy-
namic (cerebral arteries), were sonified. We saw that a physical model-
ing synthesis approach that takes the anatomy’s geometry and physical
properties into account is suitable to create intuitive and diverse sounds.
However, we also experienced that some tissues due to their similarity
in shape and physical properties, e.g., grey matter and white matter of
the brain create sounds that are hard to distinguish for the general user.
In those cases, we propose normalization, scaling, and transformation
of the tissues’ physical values into an audibly distinguishable range.

Although the presented visual feedback was received well by the
participants, we would suggest a more rigorous application of the
causality-informed nature of the framework for the visualization model,
e.g., by equally dynamic visual responses to changes in anatomy geom-
etry and physical properties.

7.1 Limitations
Although we tried to diversify the range of anatomical structures from
rigid to soft, we acknowledge that this framework has so far only been
tested on structures of the spine and the brain. Evaluation of this
method on further parts of the body would be required to claim general
application for all human tissues.

Another limitation of our work is the evaluation of MMII for medical
tasks in a simulated VR environment. Although useful for initial testing
of the method it lacks realism. Evaluating MMII on an AR HMD and
providing a physical model of the patient to the medical experts would
certainly increase the relevance of the results to clinical practice.

7.2 Outlook
Building upon the findings of this work, future studies should evaluate
the framework in an actual clinical setting and include a wider range
of anatomical structures. Future work could also focus on incorpo-
rating more detailed data from tissue as suggested in [34]. However,
this requires optimized methodologies capable of incorporating such
detailed information in finite element models, while providing low-
latency feedback suitable for surgical applications at a fine temporal
scale. Additionally, intraoperative diagnostic techniques such as mass
spectroscopy, Raman spectrometry [48], or acoustic listening [24, 38]
could provide real-time tissue information as input to the MMII frame-
work and thus further enrich the audiovisual feedback.

Furthermore, incorporating physiological data, which is inherently
dynamic and more complex, has the potential to add significant value
to the MMII framework. Physiology provides a more holistic view of
the body’s dynamics. For instance, an event in the heart could have
effects at a distal position, influencing tissues elsewhere in the body.
In this work, a blood vessel sound was proposed that demonstrates
an inital physiologically-based approach for blood flow sonification.
Offering dynamic feedback on data such as cerebral blood flow mea-
sured through MRI or metabolic changes observed through PET scans
would present additional applications that showcase the advantages of
the proposed multimodal feedback method.

8 CONCLUSION

The Multimodal Medical Image Interaction (MMII) framework show-
cased in this work presents a promising method for engaging with
human anatomy through audiovisual means. The proposed physical
modeling approach to anatomy sonification has proven to be easy to
learn and to characterize anatomical structures well. Our work pre-
sented an exemplary use case of physically informed multimodal in-
teraction in a surgical task. Evaluation involving nine medical doctors
indicated increased accuracy in brain tumor localization when using
MMII.
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Our findings underscore the advantages of audiovisual interactions
compared to unimodal, visual feedback, highlighting the potential of
multimodal approaches as viable alternatives to traditional medical
image interaction methods. We hope this work will inspire more inves-
tigation and broader adoption of multimodal interactions in medical
applications and beyond.
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